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Abstract
This paper presents a triple acceleration method (TAM) for the topology optimization (TO), which consists of three parts:
multilevel mesh, initial-value-based preconditioned conjugate-gradient (PCG) method, and local-update strategy. The TAM
accelerates TO in three aspects including reducing mesh scale, accelerating solving equations, and decreasing the number of
updated elements. Three benchmark examples are presented to evaluate proposed method, and the result shows that the proposed
TAM successfully reduces 35–80% computational time with faster convergence compared to the conventional TO while the
consistent optimization results are obtained. Furthermore, the TAM is able to achieve a higher speedup for large-scale problems,
especially for the 3D TOs, which demonstrates that the TAM is an effective method for accelerating large-scale TO problems.

Keywords Topology optimization . Triple acceleration . Multilevel mesh . Preconditioned conjugate-gradient method . Local
update

1 Introduction

Topology optimization (TO) is a mathematical method aiming
at finding the optimal material distribution subjected to some
constraints within a given domain. From the pioneering work of
Bendsøe and Kikuchi (1988), TO has become one of the most
important optimization methods in structural optimization, and
a series of impressive TO methods have emerged in the past
30 years, such as homogenization method (Bendsøe and
Kikuchi 1988), solid isotropic material with penalization
(SIMP) approach (Bendsøe 1989; Sigmund 2001), evolution-
ary approach (Xie and Steven 1993), level set method (Allaire

et al. 2004; Deng et al. 2016;Mei andWang 2004), andmoving
morphable component (MMC)method (Guo et al. 2014; Zhang
et al. 2018). TO has been successfully applied in various aca-
demic fields, such as solid mechanics (Bendsee 1983;
Lindgaard and Dahl 2013; Madah and Amir 2017), fluid me-
chanics (Gersborg-Hansen et al. 2005; Norgaard et al. 2016),
heat transfer (Dirker and Meyer 2013; Gersborg-Hansen et al.
2006), acoustics (Christiansen et al. 2015; Desai et al. 2018)
and electromagnetics (Zhou et al. 2010), and engineering fields,
such as aircraft (Zhu et al. 2016), additive manufacturing
(Langelaar 2016; Langelaar 2017), composite materials
(Cheng and Chen 2015), and design in photonics (Li et al.
2016a; Li et al. 2016b).

In actual engineering problems, the computational scales of
TOs are usually large (Aage et al. 2017; Alexandersen et al.
2016; Evgrafov et al. 2008), and will be larger and larger in the
future since the problems are becoming more complex with more
details. Therefore, pursuing higher computational efficiency is the
eternal objective of TOs. In general, there are two types ofmethods
to improve the computational efficiency: one is the algorithm im-
provement (Amir and Sigmund 2011; Kim et al. 2012), and the
other is parallel computing (Aage and Lazarov 2013; Martínez-
Frutos andHerrero-Pérez 2017;Wang et al. 2015b;Xia et al. 2017;
Zegard and Paulino 2013). Apparently, the former one is capable
to fundamentally accelerate the TO and is worthier to study.
Several aspects can be studied to improve the efficiency of the
TO, and three representative aspects are convergence
acceleration, solution acceleration, and design variable reduction.
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In order to accelerate the convergence, Lin and Chou
(1999) presented a two-stage approach for TO, the optimal
result of the first stage constructed by big-sized elements is
used as an initial topology of the second stage whose element
size is smaller, but only two different element sizes are con-
sidered in the two-stage approach. Kim and Yoon (2000) pro-
posed multiresolution multiscale topology optimization
(MTOP) where the design optimization was performed pro-
gressively from low to high resolution. Nguyen et al. (2010)
used multiresolution topology optimization (MTOP) scheme

to obtain high-resolution designs with relatively low compu-
tational cost (i.e., a coarse mesh used for finite element anal-
ysis (FEA)), which implemented in the TopOpt app (Aage
et al. 2013). Recently, Lieu and Lee (2017a, 2017b) proposed
a MTOP using isogeometric analysis (IGA) and extended it to
multimaterial TO. Although above MTOP approaches can
greatly reduce the degrees of freedom (DOFs) in the FEA or
IGA by using a coarse mesh with fewer elements, but the
accuracy of FEA or IGA is also sacrificed due to the coarse
mesh. For the strategy of refining mesh, Stainko (2006)
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presented a multilevel scheme adaptively refined only in the
interface between solid and void. More researches of refining
mesh can be found in (Lambe and Czekanski 2018; Panesar
et al. 2017; Wang et al. 2013). Above refining approaches
refined mesh on the interface between solid and void, which
increase the complexity of TO. When the volume fraction is
small, there are still many small-density and void elements to
be updated, which occupy major computational resource but
have fewer effects on the accuracy of computation and design.

In TOs, it is required to solve finite element (FE)
equations in each iteration, and a fast solution method
for the FE equations can definitely accelerate the TOs.
There are two types of equation solution methods, direct
methods (Davis 2006) and iterative methods (Saad
2003). For large-scale FE-based TO problems, iterative
methods have better performance than direct methods in
computational time and memory requirements (Benzi
2002). The key to speed up the iterative method is
how to choose a suitable iterative method and its
precondi t ioner. Augarde et al . (2006) chose a
preconditioner with element displacement components
to improve convergence. Wang et al. (2007) proposed
a preconditioned Krylov subspace methods with
recycling, which gave a fast iteration solver for large
three-dimensional TO. Many iterative methods have
been introduced into TO problems, one of which is
PCG (preconditioned conjugate-gradient method)
(Papadrakakis et al. 1996). Amir et al. (2009) used a
standard PCG solver to terminate the iterative solution
of the nested equations in a short time. Furthermore,

Amir et al. (2014) combined PCG and multigrid into
multigrid preconditioned conjugate gradients (MGCG),
aiming to accelerate the solution speed of the linear
system in TO. Liu and Tovar (2014) used the PCG in
MATLAB to write efficient 3D TO code. More PCG
applications can be found in (Amir 2015; Amir and
Sigmund 2011). Most improved methods for PCG are
accelerated by preconditioner, other factors for accelera-
tion were less considered.

For design variable reduction, Guest and Genut (2010)
found that reducing some design variables was expected to
fewer iterations than using full design variable fields. Kim
et al. (2012) proposed a reducible design variable method
(RDVM), which reduced some quickly converge design var-
iables from iterations to save computational expense. Yoo and
Lee (2018) proposed a variable grouping method which can
reduce variables according to histogram of multiplication of
sensitivity and density variable. For design variable reduction,
there are few researches meanwhile lack of concise and effec-
tive methods.

Although many researches about acceleration algo-
rithm exist, there are still lots of work can be done to
further improve current researches. Furthermore, acceler-
ation methods are mostly focused on one aspect, accel-
erating effect in multiple aspects is seldom seen. In this
paper, we will propose a triple acceleration method for
TO based on three parts: multilevel mesh, initial-value-
based PCG, and local-update strategy, which accelerates
TO in three aspects: convergence acceleration, solution
acceleration, and design variable reduction. In the reminder of
this paper, Sect. 2 introduces the basic theories of TO and the
mathematical model of PCG. Section 3 presents a detailed
description about the proposed acceleration method.
Section 4 presents the process of algorithm implementation.
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Fig. 4 The 2D design domain with 12 elements

Fig. 5 The updated range in cantilever beam (40 × 20)

Table 1 Algorithm 1

Algorithm 1 Threshold value of nodal density

Choose a threshold value of nodal density ρc
Compare each nodal density with ρc
If ρn>ρc put the encircled elements of the nodes (according to the

mapping relation between nodes and elements) into the updated range.

Fig. 6 The boundary moves 1 layer toward outside area (diffused layer
number is 1)
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Section 5 discusses the acceleration effect of the proposed
method by benchmark examples for both 2D and 3D prob-
lems, and the conclusions are drawn in Sect. 6.

2 Theoretical basis

The theoretical bases of this paper include SIMP-based TO
and PCG, whichwill be summarized in the following sections.
For more detail discussion on SIMP-based TO and PCG, we
refer readers to (Amir et al. 2009; Andreassen et al. 2011;
Barrett 1995; Liu and Tovar 2014; Sigmund 2001).

2.1 SIMP-based TO

SIMP is a simple and efficient TO method. Since Sigmund
(2001) proposed the 99-line MATLAB codes for TO; the
SIMP became more and more widespread in the world
(Andreassen et al. 2011). For the SIMP, the design domain

Table 2 Algorithm 2

Algorithm 2 Diffused layer

Choose a diffused layer number Dnum

For 1: Dnum

Assign all nodal density inside updated range with 1. Compare each
nodal density with 1.
If ρn = 1, put the encircled elements of the node (according to the
mapping relation between nodes and elements) into the new updated
range
end
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is divided into finite elements, and the element density xe
determines its Young’s modulus Ee:

Ee xeð Þ ¼ Emin þ xpe E0−Eminð Þ; xe∈ 0; 1½ � ð1Þ

where E0 is the Young’s modulus of a fully solid element; Emin is
a very small Young’s modulus assigned to void elements aiming
to prevent the stiffness matrix from becoming singular, and p is a
penalization factor (typically p = 3).
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The mathematical formulation of the compliance optimiza-
tion problem is shown as follows:

Find x ¼ x1; x2;…; xe;…xN½ �T;
Min c xð Þ ¼ UTKU ¼ ∑

N

e¼1
Ee xeð ÞueTkeue;

st

V xð Þ
V0

¼ VF

KU ¼ F
0≤xe≤1

;

8><
>:

ð2Þ

where x is the design variable vector (i.e., element densities);
N is the number of the design variables; c is the compliance;U
is the global displacement vector; F is the global force vector;
K is the global stiffness matrix; ke is the standard element
stiffness matrix with unit Young’s modulus; ue is the element
displacement vector; V(x) and V0 are the material volume and
design domain volume, and VF is the volume fraction.

To solve the optimization problem, a heuristic updating
scheme called optimality criteria (OC) (Wang et al. 2017) is
as follows:

xnewe ¼
max xmin; xe−mð Þ; if xeBη

e ≤max xmin; xe−mð Þ
xeBη

e ; if max xmin; xe−mð Þ≤xeBη
e ≤min 1; xe þ mð Þ

min 1; xe þ mð Þ; if min 1; xe þ mð Þ≤xeBη
e

8<
: ;

ð3Þ
where m is the positive move limit; η is a numerical damping
coefficient, and Be can be obtained from the optimality con-
dition as:

Be ¼
−
∂c
∂xe

λ
∂V
∂xe

ð4Þ

where λ is the Lagrangianmultiplier which can be obtained by
bi-sectioning algorithm.

The sensitivities of the objective function c and the material
volume V with respect to the element density xe are found as:

∂c
∂xe

¼ −p xeð Þp−1uTe keue ð5Þ

∂V
∂xe

¼ 1 ð6Þ

where Eq. (6) is established under the condition that each
element has unit volume.

To avoid the drawbacks of TO including checkboard, local
minima, and mesh dependency, we use the density filter in this
work, and more details can be found in the work of Bruns and
Tortorelli (Bruns and Tortorelli 2001).

2.2 Preconditioned conjugate-gradient method

PCG, improved from conjugate-gradient (CG) method, is an
iterative method for solving a system of linear algebraic equa-
tions, in which a preconditioner for PCG can be used to ac-
celerate the convergence. Applying the PCG to solve the fol-
lowing equations

Ax ¼ b ð7Þ
in which the residuals of each iteration are:

ri ¼ b−Axi ð8Þ
where the coefficient matrix A must be symmetric, positive-
definite, and sparse.

Improved from the CG, PCG adds a preconditioningmatrix
M to accelerate the solution as follows:

M−1Ax ¼ M−1b ð9Þ
and the recursion formula of residuals is:

ri ¼ ri−1−αi−1Api−1 ð10Þ
where the search direction vector pi and the multiplier αi are
expressed as:

pi ¼ zi þ βipi−1 ð11Þ

αi ¼ rTi zi
pTi Api

ð12Þ

and

F
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Fig. 9 The design domain and boundary conditions of half MBB beam

Fig. 10 The optimization result of conventional TO
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zi ¼ M−1ri ð13Þ

βi ¼
rTi zi

rTi−1zi−1
: ð14Þ

The vector xi is updated in each iteration by a multiplier αi

of the search direction vector pi:

xiþ1 ¼ xi þ αipi: ð15Þ

When the residual vector ri reaches a predefined small lev-
el, the iteration stops. Compared with the traditional method
of solving linear algebraic equations with a direct method,
PCG is more suitable for large-scale problems and is wide-
spread used as a iterative solver in FE solution (Amir et al.
2009).

3 Triple acceleration algorithm model

To accelerate the TO, three acceleration schemes including
multilevel mesh, initial-value-based PCG and local update
will be proposed in this section from different aspects.

3.1 Multilevel mesh

To reduce the computational cost, a multilevel mesh acceler-
ation algorithm is proposed, which first solves the TO in a
coarser mesh and then maps the optimized result to a finer
mesh as the initial design. During the SIMP TO, each element
density is a design variable, and the number of elements has an
important influence on the solution process, i.e., more ele-
ments costs more solving time. On the other hand, if the mesh
is too coarse, it is hard to get the precise boundary and the

optimal density distribution field. Multilevel mesh algorithm
provides a better choice to balance coarse and fine meshes.

The multilevel mesh method divides the TO process into
several levels, and the mesh size varies from coarse to fine.
First, the TO process is implemented on the coarse mesh,
which has the fewer elements. The optimal result of the coarse
mesh can be quickly obtained by a fast convergence. After
then, the mesh is refined, and the density field of the coarse
mesh is mapped to the refined mesh as the initial density field.
Through such density mapping, the TO converges much faster
so that the number of iterations on the refined mesh can be
reduced, which can successfully save the computational time
since the refined mesh requires muchmore computational cost
in each iteration. The above procedure can be repeated several
times for multiple levels in terms of the practical requirement.

The core of the multilevel mesh method is the density field
inheritance between adjacent levels. In this work, we use a
bisection method to refine the mesh. When the mesh refine-
ment is applied, one element will be refined into four (2D) or
eight (3D) subelements, and Fig. 1 shows the density field
inheritance in 2D and 3D mesh.

The flowchart of multilevel mesh algorithm is shown in
Fig. 2.

Although two levels and coincident regular grids are taking
as examples in Figs. 1 and 2, it should be noted that the
proposedmultilevel approach can be generalized for any mesh
level and non-coincident regular grids (an interpolation meth-
od is required to transmit the density fields between the non-
coincident grids).

3.2 Initial-value-based PCG

To solve the FE problem in TO, the PCG (preconditioned
conjugate-gradient method) is applied in this work to calculate
the displacement vector U in the FE equations KU =F, and a
preconditioner M is used to accelerate the solution of the
equations.

The convergence rate of PCG is given by (Amir et al. 2014)

U−U ij jj jK−1 ≤ U−U0j jj jK−1

ffiffiffi
κ

p
−1ffiffiffi

κ
p þ 1

� �i

ð16Þ

where i is the iteration number; κ is the condition number of
matrix K. When κ ≫ 1, the convergence will be very slow.

Fig. 11 The optimization results of each level. a 20 × 10. b 40 × 20. c 80 × 40

Table 3 Efficiency comparison between Top88 and TO with multilevel
mesh

Top88 Multilevel mesh

Compliance 84.84 85.25

Iteration number 61 48 + 25 + 18

Computational time (s) 3.22 2.67
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Therefore, a preconditioning matrix M is applied in the itera-
tions, which makes κ(M−1K) ≪ κ(K). In PCG method, the ef-
fective preconditionerM should make the κ(M−1K) close to 1,
which can accelerate the convergence considerably.

In order to obtain a good preconditioner M, many
methods have been proposed, such as incomplete
Cholesky factorization, diagonal scaling, or factorized
sparse approximate inverses (FSAI). More details can
be found in (Barrett 1995). In this paper, we choose
incomplete Cholesky factorization as the preconditioner,
M−1 can be factorized as follows:

M−1 ¼ LLT ð17Þ
where L is a lower triangular matrix. The FE equations
KU = F is rewritten as

K̂Û ¼ F̂ ð18Þ
where

K̂ ¼ LTKL;

Û ¼ L−1U ;

F̂ ¼ LT F

ð19Þ

By using incomplete Cholesky factorization, it is success-

ful to make the κ K̂
� �

≪κ Kð Þ. The actual acceleration effect
can be found in Sect. 5.1.2.

An initial value may accelerate the solution of PCG. In the
TO, the optimized results are similar between two adjacent
iterations, especially for the later iterations of the solution.

Therefore, we define the previous iteration result, named
Upre, as an initial value. In current iteration, Upre is close to
the unknown vectorU, which helps the PCG easier to find the
solution and save solution time.

To integrate with multilevel mesh, displacement (U) inher-
itance should be also applied between the adjacent two levels.
The U can be calculated by such interpolation strategy:

Un
i ¼ ∑

k

j¼1
N jUn−1

j ð20Þ

whereUn
i represents the new displacement field of an element

in the refinement mesh; n is the number of mesh levels; i
represents the nodal ID of the refined mesh; Nj is the value
of shape function of the coarser mesh at the ith node on the
refined mesh; j represents the nodal ID of the coarser mesh;

Un−1
j is the displacement field of the coarser mesh. With the

interpolation method, the PCG is successfully applied be-
tween the adjacent two levels, further accelerating the TO.

3.3 Local-update strategy

The last and the most important acceleration proposed in this
work is the local-update strategy, which reduces the computa-
tional scale in the TO iterations. During the conventional TO,
all design variables must be updated in each iteration.
According to Guest and Genut (2010), reducing some design
variables will not significantly influence the performance of
solutions, but save significant computational cost. Reducing
some design variables is expected to achieve fewer iterations
than using all design variables. Enlightened by this research, a
local-update strategy is proposed and realizes a high-
efficiency TO method.

The most important part of the local-update strategy is how
to identify the updated range. To guarantee the stabilization
and accuracy of TO, the updated range should cover the solid
region and the boundary. Therefore, the key of local-update
strategy is finding the boundary and the solid region.

It is a serious drawback that the traditional element-based
TO is difficult to obtain exact boundary. To identify the
boundary precisely, the nodal density is used to replace the
element density. For a node, shared by four elements (2D) or
eight elements (3D) as Fig. 3, its density ρn is calculated by

Fig. 12 The optimization results of TOs using PCG under different conditions. a No preconditioner and Upre. b Only preconditioner. c Both
preconditioner and Upre

Table 4 Efficiency comparison of PCG with differrent conditions

No
preconditioner
and Upre

Only
preconditioner

Both
preconditioner
and Upre

Compliance 93.80 93.80 93.95

Iteration number
of TO

43 43 45

Average iteration
number of PCG

8344 7 4

Computational
time (s)

82.22 5.30 5.09
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ρn ¼
∑
N

j¼1
xej

N
ð21Þ

where N is the number of encircled elements (four for 2D,
eight for 3D, particularly at the corner or boundary, the num-
ber of encircled elements is only 1,2 for 2D or 1,2,4 for 3D),
and j represents the jth encircled element. It is noted that the
nodal density is also a relative density, i.e., ρn ∈ [0, 1].

In order to map element density to nodal density, we need
to define the mapping relation. Take a coarse mesh with 12
elements as an example, where the design domain is rectan-
gular and discretized with square elements. Both elements and
nodes are numbered column-wise from left to right, shown in
Fig. 4.

There are exact IDs for each node and element, so the
mapping relation between nodes and elements of the 12 ele-
ments is formulated as

ele⟶node ¼

1 2 5 6
2 3 6 7
3 4 7 8
5 6 9 10
⋮ ⋮ ⋮ ⋮
15 16 19 20

2
6666664

3
7777775

⟵ element 1
⟵ element 2
⟵ element 3
⟵ element 4

⋮
⟵ element 12

node⟶ele ¼

1 0 0 0
1 2 0 0
2 3 0 0
3 0 0 0
1 4 0 0
1 2 4 5
2 3 5 6
⋮ ⋮ ⋮ ⋮
12 0 0 0

2
6666666666664

3
7777777777775

⟵ node 1
⟵ node 2
⟵ node 3
⟵ node 4
⟵ node 5
⟵ node 6
⟵ node 7

⋮
⟵ node 20

After obtaining nodal densities, it is easy to define a crite-
rion to divide the design domain into two subdomains by a
threshold density value: (1) the subdomain with nodal density
larger than or equal to the threshold density and (2) the
subdomain with nodal density smaller than the threshold den-
sity. Only the elements inside the former subdomain are up-
dated. In terms of the position coordinates of nodes, we can
extract the boundaries that separate the subdomains. Figure 5
shows one of the iterative results during TO for cantilever
beam with 40 × 20 mesh scale, in which the nodes with the
approximate threshold density form a closed area (inside the
blue boundary), only the elements inside this domain will be
updated. The mathematical description is as follows:

∀ρn > ρc; n⟶e∈Ωe ð22Þ
where ρc is threshold value of nodal density; Ωe is the set of
updated elements; n is the node ID, and e is the element
ID. n⟶ e represents the elements mapped from the nodes
whose nodal densities are bigger than ρc, and these elements
are assigned toΩe. The algorithm implementation is explained
in Algorithm 1 (see Table 1).

The threshold value is smaller, the updated range is bigger.
If the threshold value is 0, all elements will be updated. Vice
versa, the threshold value is bigger, the updated range is small-
er. If the threshold value is 1, no element will be updated.

Another important parameter is the diffused layer number,
which moves the boundary to the outside area. The aim of
diffused layer number is to improve optimization accuracy
with more design variables. A positive effect is to decrease
the isolated gray elements (see in Sect. 5.2) outside the up-
dated range. When the diffused layer number is 0, only the
elements inside the blue boundary are updated. If the diffused
layer number is 1, the boundary will move 1 layer toward
outside area, as shown in Fig. 6. Larger diffused layer number
means more elements will be included in the updated range.
The mathematical description of one-layer moving is follows:

e∈Ωe→n; ρn ¼ 1 ð23Þ
∀ρn ¼ 1; n⟶e∈Ωe ð24Þ
whereΩe is the set of updated elements; n is the node ID, and e
is the element ID. Equation (23) represents the nodal density
inside the updated range is assigned with 1. The elements,
mapped from the nodes whose nodal density equal to 1,

Fig. 13 The optimization results.
a Top88. b Local-update strategy

Table 5 Efficiency comparison between Top88 and TO with local-
update strategy

Top88 Local-
update

Compliance 84.85 79.03

Iteration number 61 32

Computational time (s) 3.22 1.91
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should be assigned to Ωe. Repeating such process can move
Dnum layers. The diffused-layer algorithm is listed in
Algorithm 2 (see Table 2).

Besides, how to chooseDnum is influenced by the threshold
value of nodal density ρc. Since Dnum and ρc determine the
updated range; if the ρc is too large, the Dnum should increase
to ensure a suitable updated range.

Furthermore, to improve the convergence rate of local-
update strategy, two improving approaches are proposed.
In traditional TOs, the optimization process always gen-
erates approximate structure in fewer iterations but takes a
long history to converge. When the structure stabilizes
around a certain shape, the local-update strategy can be
adopted to accelerate the TO. Therefore, the moment
when to start the local-update strategy plays an important
role in the TO. By studying the TO, it can be found that
the change value (the relative difference of the design
variables between adjacent iterations) is smaller, and the
structure change is smaller. Therefore, we define a
startup-parameter ST for the moment of local-update strat-
egy startup. ST is defined as the threshold of change val-
ue. When the change value is smaller than ST, the TO
usually generates an approximate structure, after then
local-update strategy is applied to achieve the final result.
Combined with multilevel mesh, it can be easy to gain the
approximate structure from the coarser mesh level; there-
fore, local-update strategy can start in a short time and
furtherly reduce the number of iterations. Section 5.2.1
will explain how to choose the ST in detail.

The elements with small density occupy most of computa-
tional resource when the volume fraction is small, but such
elements have a small effect on the accuracy of computation
and design. The other negative effect is from the gray ele-
ments, which cause TO difficult to obtain a black-and-white
result. Therefore, the densities of small-density elements are
directly set to the zero under certain conditions. The detail
approach is defining a small-density threshold; the element
density below the threshold will be set to zero. This density
processing approach has two significant benefits: (1) acceler-
ating the convergence rate, and (2) decreasing gray elements
and increasing the fully solid elements. To ensure the optimal
result meets the volume constraint, this process should per-
form before element density update process. It is worth noting
that instable iterations will occur if the small-density threshold
is bigger than volume fraction (VF). Finally, the flowchart of
local-update strategy is given in Fig. 7.

4 Algorithm implementation

The triple acceleration algorithm (TAM) is developed based
on MATLAB (Natick, MA, USA) in this work to solve the
minimum compliance problem.

Figure 8 illustrates the flowchart of the TO using TAM
(TO-TAM). In each mesh level, the initial-value-based PCG
algorithm solves the KU =F for U, and local-update strategy
is utilized. The convergence criterion is the relative difference
of the design variables between adjacent iterations. In order to

Fig. 14 The optimization results
of Top88 and TO-TAM for
different meshes. a Top88 with
40 × 20. b TO-TAMwith 40 × 20.
c Top88 with 80 × 40. d TO-TAM
with 80 × 40. e Top88 with 160 ×
80. f TO-TAM with 160 × 80
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accelerate the convergence rate, the coarser mesh level should
use a loose convergence criterion.

5 Numerical examples

Three benchmark examples for minimum compliance design
are examined in this section to demonstrate the acceleration

efficiency of triple acceleration algorithm. All examples are
run on a desktop computer with CPU Intel core i7-6700 K of
4.00GHz, RAM of 16.0GB, and software environment
MATLAB.

In Sect. 5.1, we examine a classical MBB beam to compare
the computation efficiency of three parts of TAM versus the
conventional TO (Andreassen et al. 2011), and study the ac-
celerated efficiency of TAM on different meshes. In Sect. 5.2,

Fig. 15 The convergence history
of Top88 and TO-TAM for
different meshes. a Top88 with
40 × 20. b TO-TAMwith 40 × 20.
c Top88 with 80 × 40. d TO-TAM
with 80 × 40. e Top88 with 160 ×
80. f TO-TAM with 160 × 80

Table 6 Efficiency comparison
between Top88 and TO-TAM Case Compliance

(Top88)
Compliance
(TO-TAM)

Computational
time (s) (Top88)

Computational
time (s) (TO-
TAM)

Speedup (TAM/
Top88) timeTop88/
timeTAA

40 × 20 84.90 80.26 1.40 0.90 1.55

80 × 40 84.85 79.93 3.22 1.61 2.00

160 × 80 87.40 81.24 10.75 5.31 2.02
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we discuss how to choose the local-update strategy parameters
(ST and Dnum) through the Michell type structure. Finally,
Sect. 5.3 studies a larger-scale 3D cantilever beam to show
the advantages of TAM for 3D cases.

5.1 MBB beam

Figure 9 shows the half MBB beam, a benchmark prob-
lem of TO (Andreassen et al. 2011; Sigmund 2001;
Sigmund 2007). Due to the symmetry, only half MBB

beam is modeled and symmetry boundary conditions are
utilized. This case study aims to compare the computa-
tion efficiency between three parts of TAM and the
conventional TO, and research accelerated efficiency of
TAM on different meshes.

5.1.1 Acceleration using multilevel mesh

The design domain is discretized with 80 × 40 linear quadri-
lateral elements, and the volume fraction (VF) of optimization
is set to 0.5. Figure 10 shows the optimization result of con-
ventional TO using the classical efficient 88-line TO code
Top88 (Andreassen et al. 2011).

No define ST

Local-update TOTop88

STEP 1

STEP 
10

STEP 
20

STEP 
30

STEP 
60

FINAL 
STEP

ST=0.16ST=0.08

Intermediate 
steps

ST=0.04

88
(a)

31
(b)

26
(c)

30
(d)

23
(e)

Fig. 17 The intermediate and
final optimized structures: (a) for
Top88 and the rest are local-
update TO with different ST: (b)
ST = 0.04, (c) ST = 0.08, (d) ST =
0.16, (e) no ST

F

2

1

= 1

= 0.3

= 1

VF=0.5

Fig. 16 The design domain and boundary conditions of Michell type
structure

Table 7 Efficiency comparison between Top88 and local-update TO
with different ST

Top88 Local-update TO

ST = 0.04 ST = 0.08 ST = 0.16 Without
ST

Compliance 15.55 14.34 14.39 14.41 14.66

Iteration number 88 31 26 30 23

Computational
time (s)

4.46 1.82 1.69 2.00 1.54
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For the 80 × 40 halfMBB beam, it is easy to be divided into
three levels; the initial mesh is 20 × 10, the middle mesh is
40 × 20; the final mesh is 80 × 40. The optimization results of
each level are shown in Fig. 11.

Table 3 gives efficiency comparison between Top88 and
TO with multilevel mesh algorithm. The iteration numbers
corresponding to different levels from coarse to fine are 48,
25, and 18, i.e., 48 iterations for mesh level 1, 25 iterations for
mesh level 2, and 18 iterations for mesh level 3 (the most
refined mesh level). As expected, the computational time of
the TO using multilevel mesh is less than that of Top88, dem-
onstrating the advantage of multilevel mesh in acceleration
efficiency. Due to the density field inheritance, it can be rapid
to obtain an approximate result on the coarse mesh so that the
optimization on the refined mesh can skip the lengthy itera-
tions with fast convergence, where the iteration number of the
final level is only 18. This result demonstrates that the multi-
level mesh scheme has a great potential in TO acceleration.

5.1.2 Acceleration using initial-value-based PCG

Preconditioned conjugate-gradient method (PCG), an iterative
solver, is usually used to solve large sparse linear equations.
Therefore, in this section, the MBB beam is divided into
100 × 50 elements to discuss the accelerated effect of the
preconditioner and initial valueUpre. Figure 12 shows the final
structures of TOs by using PCG under different conditions.

Table 4 shows the compliance values iteration number,
average iteration number of PCG and computational time for
the corresponding TOs in Fig. 12, which demonstrates that the
preconditioner is significant for PCG with reducing over 90%
computational time. Furthermore, the accelerated efficiency
also has been improved by using the Upre, with the lowest
average iteration number of PCG and the minimum

computational time. Therefore, both of the preconditioner
and initial value Upre have positive effect on the TO
acceleration.

5.1.3 Acceleration using local-update strategy

In the local-update strategy, startup-parameter ST is 0.04; the
threshold value of nodal density ρc is 0.5; diffused layer num-
ber Dnum is 8. The element density below 0.4 is set to zero in
the iterations. The design domain is discretized with 80 × 40
square elements, and the volume fraction is 0.5. The final
structure is presented in Fig. 13.

Table 5 shows the the efficiency comparison between the
TO with local-update strategy and Top88. Compared to
Top88, the TO with local-update strategy costs nearly half
iterations and less computational time, demonstrating local-
update strategy as an excellent accelerating approach. Since
the densities of small-density elements are reset to zero, the
final optimal result contains less gray elements and more fully
solid elements that will result in a clearer distinction between
black and white structure. Furthermore, the compliance of
local-update TO can be smaller. It is noted that the small-
density reset just performs before density update, so the vol-
ume fraction keeps accuracy in optimization process. The op-
timal result meets the volume constraint with a lower compli-
ance making the structure more accurate. More detail about
local-update strategy will be given in Sect. 5.2.

Top88 = 0 = 2 = 5 = 10
Fig. 18 The final optimized structures: left for Top88, the rest are local-update TO with different Dnum

Table 8 Efficiency comparison between Top88 and Local-update TO
with difference Dnum

Top88 Local-update TO

Dnum = 0 Dnum = 2 Dnum = 5 Dnum = 10

Compliance 15.55 14.69 14.40 14.36 14.34

Iteration number 88 30 26 28 27

Computational time
(s)

4.46 1.54 1.66 1.69 2.04

x

y

z

F

60

30
4

= 1

= 0.3

= 1

VF=0.3

Fig. 19 The design domain and boundary conditions of 3D cantilever
beam
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5.1.4 Acceleration using triple acceleration method

To further discuss the acceleration efficiency of the method
proposed in this work, we have modeled the MBB beam with
meshes of 40 × 20, 80 × 40, 160 × 80 linear quadrilateral ele-
ments, respectively. The volume fraction (VF) of optimization
is set to 0.5. The comparison between the TO with triple ac-
celeration method (TO-TAM) and Top88 on difference mesh
are shown in Fig. 14.

Figure 15 presents the convergence history of Top88 and
TO-TAM on different meshes and the efficiency comparison
is given in Table 6. Since the initial element density is equal to
VF, the volume fraction in optimization process is always
equal to 0.5. From Fig. 15, the values of the objective func-
tion, i.e., compliance, decrease generally with the iteration
number increasing in all cases, only have a small oscillation
when the mesh level changes in the TO-TAM. Due to the
multilevel mesh, per iteration time of coarser mesh levels is
much smaller than that of the finest mesh level, while the per
iteration time of the finest mesh level is closed to that of Top88
with the same mesh scale. Since the approximate structure can
be inherited from coarser mesh levels by the multilevel mesh
approach, the local-update strategy can start quickly and con-
verge fast to further decrease the number of iterations.
Besides, due to the usage of initial-value-based PCG, the
speed of solving FE equations can be also accelerated in each
iteration. From Table 6, the speedup value ranges from 1.55 to
2.02, meaning the TO-TAM has reduced 35–51% computa-
tional time compared to Top88, demonstrating the higher ef-
ficiency of TO-TAM. For the large-scale mesh, TO-TAM can
achieve better accelerated effect. Since the densities of small-
density elements are reset to zero in the local-update strategy,

smaller compliance values are obtained by the TO-TAM com-
pared to the Top88, which further demonstrates accuracy of
the TO-TAM.

5.2 Michell type structure

In this section, we discuss how to choose the parameters of
local-update strategy, and theMichell type structure (Luo et al.
2009; Wang et al. 2017) is used here as an example. The
design domain and boundary conditions are presented in
Fig. 16. There are a fixed constraint at the bottom-left corner
and a roller constraint at the bottom-right corner, as well as a
mid-span point load.

5.2.1 Startup parameter

By studying the conventioal TO using the classical top88 code
(Andreassen et al. 2011), there is a connection between the
structure and change value: the change value is smaller and
the structure change is smaller. When the structure stabilizes
around a certain shape, the local-update strategy is applied.
For the Michell type structure, we discuss various values of
ST, defined as threshold of change value, and the local-update
strategy is utilized when the change value is smaller than ST.
The final structures of local-update strategy under different ST
are presented in Fig. 17, among which no ST represents the
TO starts directly with the local-update strategy. The Michell
type structure is discretized into 80 × 40 elements; the thresh-
old value of nodal density ρc is 0.5, and the diffused layer
numberDnum is 8. The element density below 0.4 is set to zero
in the iterations.

From Table 7, we can find that startup-parameter ST is
better to chose nearby 0.08 for this benchmark problem. If
ST is too big, the final structure will have isolated gray ele-
ments; if ST is too small, the acceleration efficency is low. In
addition, Table 7 demonstrates that starting TO process with-
out defining ST has bad performance leading to lots of isolated
gray elements, and the reason for this is that the TO starting
directly with local-update strategy is not based on an approx-
imate structure as that of the TO with a startup-paramter. In

Fig. 20 The final structure
optimized by a top3d and b TO-
TAM

Table 9 Efficiency comparison between top3d and TO-TAM

top3d TO-TAM

Compliance 1139.48 935.84

Iteration number 113 45 + 32

Computational time (s) 534.25 108.35
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general, a suitable interval of ST (around 0.1) can obtain a
high-speed and accurate TO result.

5.2.2 Diffused layer number

The another parameter to be discussed is diffused layer num-
berDnum. During the local-update strategy, one problem is the
isolated gray elements. In the local-update iterations, these
isolated elements are outside the updated range, so these gray
elements will not change and become isolated from the up-
date-range. In order to solve this problem, the diffused layer is
applied. For the 80 × 40Michell type structure, the final struc-
tures of the TOs with differrent diffused layer number Dnum

are shown in Fig. 18. The startup-parameter ST is set to 0.12;
other parameters are the same as that in Sect. 5.2.1.

Table 8 lists the compliance values, iteration number, and
computational time for the TOs illustrated in Fig. 18. We
observe, as expected, small Dnum leads to isolated gray ele-
ments and large Dnum leads to more computational time. As
Dnum increases, the compliance decreases, also meaning the
improvement of accuracy. For this benchmark problem, Dnum

should be bigger than 5. It should be noted the optimal Dnum

may be different for different cases, e.g., Dnum can be set to 2
for the 3D example in Sect. 5.3.

In this section, we find that both startup-parameter ST and
diffused layer number Dnum are of great importance in com-
putational cost and accuracy for the local-update strategy. And
for different TO problems, the parameters should be defined
based on the actual conditions.

5.3 3D cantilever beam

Figure 19 shows an example of 3D cantilever beam (Liu and
Tovar 2014), which is fully constrained in one end, and a unit
distributed vertical load is applied downwards on lower free
edge. The 3D cantilever beam is discretized into 60 × 30 × 4
linear hexahedron elements; the prescribed volume fraction
VF is set to 0.3. By using the TAM method, 3D cantilever
beam is divided into two levels, the coarser mesh is 30 ×
15 × 2; the final mesh is 60 × 30 × 4. Startup parameter ST is
defined as 0.12; convergence criterion is 0.01; the threshold
value of nodal density ρc is 0.5. Since the width is only equal
to 4,Dnum is suitably set to 2. The element density below 0.5 is
set to zero. Finally, the final structure optimized by the TO-
TAM is presented in Fig. 20b, as well as the final structure of
conventional TO (using the classical top3d code by Liu and
Tovar (2014)) in Fig. 20a.

Table 9 presents a clear comparison between TO-TAM and
top3d. The iteration numbers of TO-TAM for different mesh
levels from coarse to fine are 45 and 32, respectively, and TO-
TAM is much faster than top3d (only costs 1/5 time of top3d).
The compliance of TO-TAM is also less than top3d, which
indicates that the optimal result of TAM is more accurate. This
demonstrates that the use of TAM can also achieve a high-
efficient 3D TO, thereby demonstrating the advantages of
TAM for 3D cases.

To further discuss the capability of TAM for 3D cases, we
test the 3D TO-TAM for three more refined cases with meshes
of 60 × 30 × 4, 80 × 40 × 6 and 120 × 60 × 8 linear hexahedron
elements, respectively, and the numbers of mesh levels for
these cases are 2, 2, and 3.

The optimized results are shown in Fig. 21, and the com-
parison for the different cases is given in Table 10. Definitely,
the conputational time and maximum menory allocation in-
crease with the mesh scale increasing. For a large-scale prob-
lem, it should be noted that the mesh can be devided into more
than two levels as long as the TO on initial mesh level can
obtain the approximate structure, e.g., three levels are used for
the case with mesh of 120 × 60 × 8 elements. All the three
cases sucessfully obtain consistent optimized results (see
Fig. 21), and the iteration numbers for different mesh levels

Fig. 21 The results of 3D TO-TAM for different meshes of a 60 × 30 × 4, b 80 × 40 × 6, and c 120 × 60 × 8

Table 10 Comparison of 3D TO-TAM for different meshes

Case Computational
time (s)

Iteration
number

Maximum
memory
allocation (MB)

60 × 30 × 4 108.35 45 + 32 873

80 × 40 × 6 492.44 53 + 45 1731

120 × 60 × 8 1685.32 45 + 32 + 37 4927
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from coarse to fine are 45 and 32 (60 × 30 × 4 case); 53 and 45
(80 × 40 × 6 case); and 45, 32, and 37 (120 × 60 × 8 case),
respectively, which demostrates the significant convergence
of the TO-TAM.

6 Conclusions

This paper has proposed a triple acceleration method (TAM)
for topology optimization (TO), which includes three parts:
multilevel mesh, initial-value-based PCG, and local-update
strategy. Three benchmark examples have been tested to ver-
ify the proposed method. The first example compares the ac-
celeration efficiency between three parts of TAM and the clas-
sical TO code Top88, and all the three parts can accelerate the
TO; then, we examine TAM in different scales of mesh, and
the results show that the TO using TAM has reduced 35–51%
computational time compared to Top88, especially better for
large-scale problems. The second example has illustrated the
importance of parameters choice for the local-update strategy.
The third example demonstrates that the TAM also has excel-
lent performance for accelerating 3D TO problems, performs
better than 2D TO problems, which reduces 80% computa-
tional time. All examples demonstrate that the proposed TAM
provides an excellent acceleration for TOs. Although the cur-
rent work takes SIMP as example, the TAM will be extended
to other types of TO methods such as level-set-based TO and
MMC-based TO (Wang and Benson 2016a; Xie et al. 2018) in
the future, and combined with advanced methods such as
isogeometric analysis (Wang and Benson 2016b; Wang et al.
2015a) and GPU parallel computing (Martínez-Frutos and
Herrero-Pérez 2017; Xia et al. 2017).

Replication of results The proposed method is based on classical TO
method SIMP, the implementation of which has been introduced detailly
in this paper, making it easy to reproduce results. Besides, the proposed
method is a part of a new project that forbids opening the source code.
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